nlp推荐算法:就是利用用户的一些行为,通过一些数学算法,推测出用户可能喜欢的东西。
推荐算法的研究起源于20世纪90年代,由美国明尼苏达大学 GroupLens研究小组最先开始研究,他们想要制作一个名为 Movielens的【电影推荐系统】,从而实现对用户进行电影的个性化推荐。
推荐算法是计算机专业中的一种算法,通过一些数学算法,推测出用户可能喜欢的东西,目前应用推荐算法比较好的地方主要是网络,其中淘宝做的比较好。所谓推荐算法就是利用用户的一些行为,通过一些数学算法,推测出用户可能喜欢的东西。推荐算法主要分为6种。
云计算通常可以分为三类:将基础设施作为服务(IaaS)、将平台作为服务(PaaS)和将软件作为服务(SaaS)。
1、IaaS:将硬件设备等基础资源封装成服务供用户使用。 在IaaS环境中,用户相当于在使用裸机和磁盘,既可以让它运行Windows,也可以让它运行Linux。 IaaS最大优势在于它允许用户动态申请或释放节点,按使用量计费。而IaaS是由公众共享的,因而具有更高的资源使用效率。
2、PaaS:提供用户应用程序的运行环境,典型的如Google App Engine。PaaS自身负责资源的动态扩展和容错管理,用户应用程序不必过多考虑节点间的配合问题。但与此同时,用户的自主权降低,必须使用特定的编程环境并遵照特定的编程模型,只适用于解决某些特定的计算问题。
3、SaaS:针对性更强,它将某些特定应用软件功能封装成服务。SaaS既不像PaaS一样提供计算或存储资源类型的服务,也不像IaaS一样提供运行用户自定义应用程序的环境,它只提供某些专门用途的服务供应用调用。
注意:随着云计算的深化发展,不同云计算解决方案之间相互渗透融合,同一种产品往往横跨两种以上类型。
推荐算法是计算机专业中的一种算法,通过一些数学算法,推测出用户可能喜欢的东西,目前应用推荐算法比较好的地方主要是网络,其中淘宝做的比较好。所谓推荐算法就是利用用户的一些行为,通过一些数学算法,推测出用户可能喜欢的东西。
早期的推荐系统文献中一般从所选取的角度和所采用的技术两个不同的维度对个性化推荐算法进行划分。从选取的角度不同,可以分为基于内容的算法、基于协同过滤的算法,以及混合式算法三大类。从具体技术实现的角度,可以分为基于内存(memory-based)的算法和基于模型(model-based)的算法两种形式
基于内容的推荐是从信息抽取领域自然而然发展起来的一类算法,其出发点是在对文本信息和条目元信息进行整理、建模的基础上,针对用户的不同兴趣偏好进行推送。
与之相对应的,基于协同过滤的推荐并不关心条目的具体属性,而是对用户整体的评分信息进行整理和建模,根据用户行为找出口味相似的用户群或者风格类似的条目,在此基础上进行推荐。由于利用了先验知识,对被推荐的内容有深入了解,基于内容的推荐在可解释性和新用户启动上有一定优势。
而基于协同过滤的推荐在可扩展性、准确性和惊喜程度上都要优于基于内容的推荐。有时我们也分别把这两种方式叫做白盒推荐和黑盒推荐。混合式的推荐则是综合以上两种方法的优点。针对不同的场景和用户群用不同的权重机制给出合理的推荐。严格来说,混合式推荐更像一种算法调度和权重分配机制,用来调整最终推荐结果的优化过程,而非方向性的推荐算法。
这种形式一般可以按推荐引擎的算法分,主要有基于协同过滤、基于内容推荐等算法。
“买过此商品的人,百分之多少还买过其他啥啥商品”:协同过滤item-based filtering
“和你兴趣相似的人,还买过其他啥啥商品”:协同过滤 user-based filtering
“相关商品推荐”:基于内容推荐content-based
“猜你喜欢” 一般混合使用推荐算法。
总共七步:
1.在手机桌面找到今日头条 APP,打开今日头条;
2.进入今日头条首页页面后,点击我的;
3.进入我的页面后,点击设置;
4.进入设置页面后,点击隐私;
5.进入隐私页面后,关闭个性化推荐;
6.在关闭提醒中点击确定;
7.关闭成功,这样个性化推荐就关闭成功了。